Hyperinsulinism/hyperammonemia syndrome in children with regulatory mutations in the inhibitory guanosine triphosphate-binding domain of glutamate dehydrogenase.

نویسندگان

  • C MacMullen
  • J Fang
  • B Y Hsu
  • A Kelly
  • P de Lonlay-Debeney
  • J M Saudubray
  • A Ganguly
  • T J Smith
  • C A Stanley
چکیده

The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a form of congenital hyperinsulinism in which affected children have recurrent symptomatic hypoglycemia together with asymptomatic, persistent elevations of plasma ammonium levels. We have shown that the disorder is caused by dominant mutations of the mitochondrial enzyme, glutamate dehydrogenase (GDH), that impair sensitivity to the allosteric inhibitor, GTP. In 65 HI/HA probands screened for GDH mutations, we identified 19 (29%) who had mutations in a new domain, encoded by exons 6 and 7. Six new mutations were found: Ser(217)Cys, Arg(221)Cys, Arg(265)Thr, Tyr(266)Cys, Arg(269)Cys, and Arg(269)HIS: In all five mutations tested, lymphoblast GDH showed reduced sensitivity to allosteric inhibition by GTP (IC(50), 60--250 vs. 20--50 nmol/L in normal subjects), consistent with a gain of enzyme function. Studies of ATP allosteric effects on GDH showed a triphasic response with a decrease in high affinity inhibition of enzyme activity in HI/HA lymphoblasts. All of the residues altered by exons 6 and 7 HI/HA mutations lie in the GTP-binding domain of the enzyme. These data confirm the importance of allosteric regulation of GDH as a control site for amino acid-stimulated insulin secretion and indicate that the GTP-binding site is essential for regulation of GDH activity by both GTP and ATP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis and characterization of the hyperinsulinism/hyperammonemia syndrome: predominance of mutations in exons 11 and 12 of the glutamate dehydrogenase gene. HI/HA Contributing Investigators.

Glutamate dehydrogenase (GDH) is allosterically activated by the amino acid leucine to mediate protein stimulation of insulin secretion. Children with the hyperinsulinism/hyperammonemia (HI/HA) syndrome have symptomatic hypoglycemia plus persistent elevations of plasma ammonium. We have reported that HI/HA may be caused by dominant mutations of GDH that lie in a unique allosteric domain that is...

متن کامل

Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations.

Glutamate dehydrogenase (GDH) catalyses the reversible oxidative deamination of l-glutamate to 2-oxoglutarate in the mitochondrial matrix. In mammals, this enzyme is highly regulated by allosteric effectors. The major allosteric activator and inhibitor are ADP and GTP, respectively; allosteric activation by leucine may play an important role in amino acid-stimulated insulin secretion. The physi...

متن کامل

Neurological aspects in hyperinsulinism-hyperammonaemia syndrome.

Hyperinsulinism-hyperammonaemia syndrome (HHS) is a rare cause of congenital hyperinsulinism, due to missense mutations in the GLUD1 gene, resulting in glutamate dehydrogenase (GDH) overactivity. The aim of this study was to document the spectrum of neurological disturbances associated with HHS and to identify possible phenotype-genotype correlations. We retrospectively analyzed the neurologica...

متن کامل

The structure of apo human glutamate dehydrogenase details subunit communication and allostery.

The structure of human glutamate dehydrogenase (GDH) has been determined in the absence of active site and regulatory ligands. Compared to the structures of bovine GDH that were complexed with coenzyme and substrate, the NAD binding domain is rotated away from the glutamate-binding domain. The electron density of this domain is more disordered the further it is from the pivot helix. Mass spectr...

متن کامل

Functional hyperactivity of hepatic glutamate dehydrogenase as a cause of the hyperinsulinism/hyperammonemia syndrome: effect of treatment.

OBJECTIVE The combination of persistent hyperammonemia and hypoketotic hypoglycemia in infancy presents a diagnostic challenge. Investigation of the possible causes and regulators of the ammonia and glucose disposal may result in a true diagnosis and predict an optimum treatment. PATIENT Since the neonatal period, a white girl had been treated for hyperammonemia and postprandial hypoglycemia ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical endocrinology and metabolism

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 2001